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Modern organic synthesis strives for reactions that rapidly
transform readily available starting materials into complex mol-
ecules! Transition-metal-catalyzed cycloaddition can construct
complex polycyclic molecules in a single st&for carbocyclic

systems containing six-membered rings, the inter- and intramo-

lecular metal-catalyzed [2- 2 + 2] cycloaddition reactions of

alkynes are nowadays used to prepare numerous benzene and

polycyclic benzene derivativéddowever, the analogous reactions
of alkynes with alkenésor enynes, which afford functionalized

bicyclic 1,3-cyclohexadienes, have received much less attention.
Here we describe a new cascade reaction involving an Ru-catalyzed 1

addition of alkenes to 1,6-diyn&gollowed by a thermal 6er
electrocyclization (Scheme 1).

Scheme 1. Ru-Catalyzed Addition of Alkenes to 1,6-Diynes
Followed by 6e—zx Electrocyclization
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Slow addition of a solution ofa (X = C(CO,Me),) in DMF to
a heated mixture of DMF and methyl acrylas) containing the
catalytic mixture (10% [Cp*Ru(CECN)s]PFs plus 10% EfNCI)
afforded the cyclohexadienda (R, = CO,Me, R, = H) in
reasonably good yield (Table 1, entry 1, conditions’ Apther
monosubstituted electron-deficient olefins [methyl vinyl keta2is) (
acrolein @c), and acrylonitrile 2d)] gave the corresponding
cyclohexadienes in moderate yields {38l%, Table 1, entries
2—4), while the disubstituted olefin dimethyl maleage) gave a
61% yield of the more functionalized cyclohexadiefe(Table 1,

Table 1. Reactions of Diyne 1la with Acyclic Alkenes 2a—k

entry alkene cyclohexadiene yield2b
1 2a R =COMe Ro=H 4a 62
2 2b R;=COMe R=H 4b 51¢
3 2c R;y=CHO R=H 4c 33(60)
4 2d R;=CN Ro=H 4d 46
5 2 R =COMe R=CO,Me 4e 61
6 2f Ry;=CH)OEt R=H Af 52 (90)
7 29 Ry=CH)OPh R=H 49 66 (85)
8 2h R=CH,OTMS R:=H 4h 58
9 2 R1 = CH,OH Ro=H 4 66°
0 2] Rl = CsHll Rz =H 4j 67

11 2k R;=TMS Ro=H 4k 25 (72)

a|solated yields from reactions performed at 8D by slow addition,
over 4 h, of 0.5 mmol ofL in DMF to a mixture of 3 equiv o2, 10%
EuNCI, and 10% [Cp*Ru(CHCN)sPFs in DMF (conditions A). Dimer (16
15%) and trimer ofla (5%) are the only observed byproducts, and there
are no traces of DielsAlder adducts of cyclohexadiends ° Yields in
parentheses were isolated when using 10 equiwithout slow addition
of 1 (conditions B). Solvent used: acetone, 4€.9A 6% yield of the
benzene derivative was also isolatéé 3:1 mixture of 4i and its
regioisomerdi' (R; = H, R, = CH,OH) was isolated.

occurrence of a 1,5-H shift after the expected {22 + 2]
cycloaddition reaction. In the present case, isolation of the open
trienes3e and3f8 following reaction oflawith allyl ethers2e and

2f at room temperature allowed the hypothesis of the mechanism
shown in Scheme 2 (path A). When mixed with¥EEl, the cationic
catalyst [Cp*Ru(CHCN);]PFs probably generates the neutral
complex Cp*Rul,Cl (I, L= CH3CN), as is suggested by changes
in theH NMR spectrunt. Oxidative coupling of this complex with
the diyne would form the ruthenacyclic speciesinsertion of the
alkene which would give compleX . g-Elimination, followed by
reductive elimination, would then affor@)-hexatrienes3, which

at 50°C would undergo thermal disrotatory Geelectrocyclization

entry 5). Substituted alkenes with metal-coordinating heteroatoms to give cyclohexadienes.

(ethers2f—h and alcohol2i) afforded quite good yields of the
expected cyclohexadienes (Table 1, entrie9f but the more
electron-rich vinyl propyl ether failed to react. Surprisingly,
nonactivated olefins [1-hepten®j) and vinyl trimethylsilaneZk)]
also reacted witfla, affording cyclohexadiene4j and 4k in 67

As expected, like ItoH) we found that addition of 2,5-
dihydrofuran 2I) to diynesla, 1b (X = O), andlc (X = CHyp)
afforded the tricyclic 1,3-cyclohexadienBk 5I', and5I" in good
to excellent yields (Table 2, entry 1). Cyclic enorra and 20
and lactone2n behaved similarly, with relatively good yields

and 25% vyields, respectively (Table 1, entries 8 and 9), and showing (entries 2 and 3). Finally, like their acyclic analogues, nonactivated

that the presence of a heteroatom in allylic position in the alkene
is not required, as has been suggedtedhut it appears to be
significant for better yields of cyclized products. Selected reactions
performed using 10 equiv of alken2gconditions B) gave better
yields (Table 1, entries 3, 6, 7, and 11).

Strikingly, the double bonds in cyclohexadiereare not in the
positions expected for a [2 2 + 2] cycloaddition reaction. This
type of bond migration produethas previously been observed by
Itoh*i when using benzyl allyl ether and was attributed to the
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cycloalkene2p and 2q reacted, affording the expected tricyclic
cyclohexadieneSp and5q although in low yields (entry 4).

With no cyclic alkene, we were able to isolate an intermediate
analogous to hexatrieng (Scheme 2). We hypothesize that the
conformation of the corresponding tricycloruthenacylitleis not
suitable for-elimination due to the steric restrictions imposed by
the annelated ring, with reductive elimination being the favored
pathway leading to the tricyclic cyclohexadienggScheme 2,
path B)?
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Scheme 2. Possible Mechanisms of the Ru-Catalyzed Preparation of Cyclohexadienes from 1,6-Diynes by Addition of Acyclic Alkenes

(path A) or Cyclic Alkenes (path B)
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Table 2. Reactions of Diynes 1 with Cyclic Alkenes 2l—q, Giving
Cyclohexadienes 51—q

entry  cyclic alkene cyclohexadienes” yield”
H
1 Cr XC@3° 92,95, 56
H
21 51, 50, 51
o} H O
2 E/fx X X
) 5m 37(12)°
2m X=CH, S5m X=CH, Sn 60
2n X=0 5n X=0
o o
g Ay
o 0
20 50
H
s Coh 5929
@n G 5q32
2p n=1 Spn=1
2q n=2 5q n=2

a|solated yields following conditions A as in Table 1. Same byproducts
are also observed.X = C(CQO;Me), except in5I' (X = O) and5I" (X =
CHy). ¢ Solvent used: acetone, 4€. Yield of the benzene derivative in
parentheses. See ref 4f for aromatics from Ni/Zn-promoted cycloadditions
of cyclic enones.

In conclusion, we have discovered a new cascade reaction
involving two consecutive transformations: the Ru-catalyzed
addition of acyclic alkenes to 1,6-diynes to giv@-pexatrienes
followed by thermal 6er electrocyclization to afford bicyclic
cyclohexadienes in which the double bonds have “migrated”. Under
the same reaction conditions, cyclic olefins afford tricyclic cyclo-
hexadienes through [2 2 + 2] cycloaddition reactions.
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Ru-catalyzed reaction and spectral data for all new compounds. This
material is available free of charge via the Internet at http://pubs.acs.org.
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